Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Whole-Genome Sequencing and Bioinformatics Analysis of Apiotrichum mycotoxinivorans: Predicting Putative Zearalenone-Degradation Enzymes.

Identifieur interne : 000009 ( Main/Exploration ); précédent : 000008; suivant : 000010

Whole-Genome Sequencing and Bioinformatics Analysis of Apiotrichum mycotoxinivorans: Predicting Putative Zearalenone-Degradation Enzymes.

Auteurs : Jinyuan Sun [République populaire de Chine] ; Yan Xia [République populaire de Chine] ; Dengming Ming [République populaire de Chine]

Source :

RBID : pubmed:32849454

Abstract

Biological detoxification techniques have been developed by using microorganisms such as bacteria, yeast, and fungi to eliminate mycotoxin contamination. However, due to the lack of molecular details of related enzymes, the underlying mechanism of detoxification of many mycotoxins remain unclear. On the other hand, the next generation sequencing technology provides a large number of genomic data of microorganisms that can degrade mycotoxins, which makes it possible to use bioinformatics technology to study the molecular details of relevant enzymes. In this paper, we report the whole-genome sequencing of Apiotrichum mycotoxinivorans (Trichosporon mycotoxinivorans in old taxonomy) and the putative Baeyer-Villiger monooxygenases (BVMOs) and carboxylester hydrolases for zearalenone (ZEA) degradation through bioinformatic analysis. In particular, we developed a working pipeline for genome-scaled prediction of substrate-specific enzyme (GPSE, available at https://github.com/JinyuanSun/GPSE), which ultimately builds homologous structural and molecular docking models to demonstrate how the relevant degrading enzymes work. We expect that the enzyme-prediction woroflow process GPSE developed in this study might help accelerate the discovery of new detoxification enzymes.

DOI: 10.3389/fmicb.2020.01866
PubMed: 32849454
PubMed Central: PMC7416605


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Whole-Genome Sequencing and Bioinformatics Analysis of
<i>Apiotrichum mycotoxinivorans</i>
: Predicting Putative Zearalenone-Degradation Enzymes.</title>
<author>
<name sortKey="Sun, Jinyuan" sort="Sun, Jinyuan" uniqKey="Sun J" first="Jinyuan" last="Sun">Jinyuan Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xia, Yan" sort="Xia, Yan" uniqKey="Xia Y" first="Yan" last="Xia">Yan Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ming, Dengming" sort="Ming, Dengming" uniqKey="Ming D" first="Dengming" last="Ming">Dengming Ming</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32849454</idno>
<idno type="pmid">32849454</idno>
<idno type="doi">10.3389/fmicb.2020.01866</idno>
<idno type="pmc">PMC7416605</idno>
<idno type="wicri:Area/Main/Corpus">000053</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000053</idno>
<idno type="wicri:Area/Main/Curation">000053</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000053</idno>
<idno type="wicri:Area/Main/Exploration">000053</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Whole-Genome Sequencing and Bioinformatics Analysis of
<i>Apiotrichum mycotoxinivorans</i>
: Predicting Putative Zearalenone-Degradation Enzymes.</title>
<author>
<name sortKey="Sun, Jinyuan" sort="Sun, Jinyuan" uniqKey="Sun J" first="Jinyuan" last="Sun">Jinyuan Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xia, Yan" sort="Xia, Yan" uniqKey="Xia Y" first="Yan" last="Xia">Yan Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ming, Dengming" sort="Ming, Dengming" uniqKey="Ming D" first="Dengming" last="Ming">Dengming Ming</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Biological detoxification techniques have been developed by using microorganisms such as bacteria, yeast, and fungi to eliminate mycotoxin contamination. However, due to the lack of molecular details of related enzymes, the underlying mechanism of detoxification of many mycotoxins remain unclear. On the other hand, the next generation sequencing technology provides a large number of genomic data of microorganisms that can degrade mycotoxins, which makes it possible to use bioinformatics technology to study the molecular details of relevant enzymes. In this paper, we report the whole-genome sequencing of
<i>Apiotrichum mycotoxinivorans</i>
(
<i>Trichosporon mycotoxinivorans</i>
in old taxonomy) and the putative Baeyer-Villiger monooxygenases (BVMOs) and carboxylester hydrolases for zearalenone (ZEA) degradation through bioinformatic analysis. In particular, we developed a working pipeline for genome-scaled prediction of substrate-specific enzyme (GPSE, available at https://github.com/JinyuanSun/GPSE), which ultimately builds homologous structural and molecular docking models to demonstrate how the relevant degrading enzymes work. We expect that the enzyme-prediction woroflow process GPSE developed in this study might help accelerate the discovery of new detoxification enzymes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32849454</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Whole-Genome Sequencing and Bioinformatics Analysis of
<i>Apiotrichum mycotoxinivorans</i>
: Predicting Putative Zearalenone-Degradation Enzymes.</ArticleTitle>
<Pagination>
<MedlinePgn>1866</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2020.01866</ELocationID>
<Abstract>
<AbstractText>Biological detoxification techniques have been developed by using microorganisms such as bacteria, yeast, and fungi to eliminate mycotoxin contamination. However, due to the lack of molecular details of related enzymes, the underlying mechanism of detoxification of many mycotoxins remain unclear. On the other hand, the next generation sequencing technology provides a large number of genomic data of microorganisms that can degrade mycotoxins, which makes it possible to use bioinformatics technology to study the molecular details of relevant enzymes. In this paper, we report the whole-genome sequencing of
<i>Apiotrichum mycotoxinivorans</i>
(
<i>Trichosporon mycotoxinivorans</i>
in old taxonomy) and the putative Baeyer-Villiger monooxygenases (BVMOs) and carboxylester hydrolases for zearalenone (ZEA) degradation through bioinformatic analysis. In particular, we developed a working pipeline for genome-scaled prediction of substrate-specific enzyme (GPSE, available at https://github.com/JinyuanSun/GPSE), which ultimately builds homologous structural and molecular docking models to demonstrate how the relevant degrading enzymes work. We expect that the enzyme-prediction woroflow process GPSE developed in this study might help accelerate the discovery of new detoxification enzymes.</AbstractText>
<CopyrightInformation>Copyright © 2020 Sun, Xia and Ming.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Jinyuan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ming</LastName>
<ForeName>Dengming</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Apiotrichum mycotoxinivorans</Keyword>
<Keyword MajorTopicYN="N">BVMO</Keyword>
<Keyword MajorTopicYN="N">carboxylesterase</Keyword>
<Keyword MajorTopicYN="N">genome-scaled prediction of substrate-specific enzyme (GPSE)</Keyword>
<Keyword MajorTopicYN="N">mycotoxin detoxification</Keyword>
<Keyword MajorTopicYN="N">whole-genome sequencing</Keyword>
<Keyword MajorTopicYN="N">zearalenone (ZEA)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32849454</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2020.01866</ArticleId>
<ArticleId IdType="pmc">PMC7416605</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D645-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25414340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):439-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Jan;18(1):188-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18025269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Nutr Food Res. 2006 May;50(6):543-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16715543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycotoxin Res. 2012 Nov;28(4):199-218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23606192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Apr;76(7):2353-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20118365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19892822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D624-D632</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29145643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2020 Jul 1;37(7):868-878</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31898704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Dec 1;28(23):3150-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23060610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:Unit 4.10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19274634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D459-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Apr 28;12:124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21526987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mob DNA. 2015 Jun 02;6:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26045719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2019;1962:1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31020551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2013 Jan 15;168(1):6-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D138-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mem Inst Oswaldo Cruz. 2017 Oct;112(10):719-722</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28954000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jul 21;300(4):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D572-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17942425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2003 Feb 1;143-144:289-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12604215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xenobiotica. 1988 Apr;18(4):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2969647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):953-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci Health B. 2016;51(4):236-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26786025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicon. 2019 Mar 15;160:12-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30772433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2012 Mar 20;167(3):121-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21885267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2014 Sep;187(3):215-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25108239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycotoxin Res. 2016 Nov;32(4):179-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27554261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Apr 25;7:561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27199907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Dec 22;12:491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22192575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem Toxicol. 2020 Jan;135:110768</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31479712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2018 Sep;35(9):1819-1831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29889651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D670-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21062828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2016 Nov 25;17(1):239</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27887629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2007 Dec;14(12):1334-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18096502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jul 10;10(7):e0132689</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26161776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicology. 2001 Oct 15;167(2):101-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11567776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30931475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Aug 28;9:402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18755027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull World Health Organ. 1999;77(9):754-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10534900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2020 Jan 8;48(D1):D9-D16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31602479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2004 Nov;27(6):661-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15612623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mycol. 2017 Jul 1;55(5):518-527</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27816903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 May;27(5):722-736</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28298431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2010 Jan 30;31(2):455-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19499576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2019;1962:227-245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31020564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2002 Jul 1;365(Pt 1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11978180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D555-D559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27924032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1654:39-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28986782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D542-D549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30395242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 1995 Dec;82-83:853-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8597153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(9):755-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2020 Feb;17(2):155-158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31819265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Aug 19;5:113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15318951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):325-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Apr 06;8:503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28428796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr F Struct Biol Commun. 2017 Jul 1;73(Pt 7):376-381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28695844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 19;9(11):e112963</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25409509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stud Mycol. 2015 Jun;81:85-147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26955199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2019 Jun 26;24(13):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31247992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 May 8;518(1-3):43-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2014 Apr;118(4):364-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24742831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cheminform. 2018 Aug 14;10(1):39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30109435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26582926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 May 14;5:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15144565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jul 2;47(W1):W81-W87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31032519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D516-D521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30053267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxins (Basel). 2017 Mar 24;9(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28338601</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Sun, Jinyuan" sort="Sun, Jinyuan" uniqKey="Sun J" first="Jinyuan" last="Sun">Jinyuan Sun</name>
</noRegion>
<name sortKey="Ming, Dengming" sort="Ming, Dengming" uniqKey="Ming D" first="Dengming" last="Ming">Dengming Ming</name>
<name sortKey="Xia, Yan" sort="Xia, Yan" uniqKey="Xia Y" first="Yan" last="Xia">Yan Xia</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000009 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000009 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32849454
   |texte=   Whole-Genome Sequencing and Bioinformatics Analysis of Apiotrichum mycotoxinivorans: Predicting Putative Zearalenone-Degradation Enzymes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32849454" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020